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COMPRESSIBLE GAS FLOW BETWEEN CLOSELY SPACED 
PLATES 

ZISSIMOS P. MOURELATOS 
Engine Research Department. General Motors Research Laboratories. Warren, Michigan 48090, USA. 

SUMMARY 
A theoretical analysis is presented to solve numerically the steady state Navier-Stokes equations, continuity 
equation and energy equation for a compressible ideal gas flow between two closely spaced, in general non- 
parallel, infinitely wide plates (slider bearing). The analysis includes the gas inertia effect and covers both 
non-choked and choked flows. The results of the present analysis compare very well with both analytical and 
experimental results of compressible flow in a slider bearing comprised of two parallel and stationary plates. 
It was found that for choked flow the gas inertia effect is important, while the consideration of the energy 
equation does not affect the accuracy of the calculated flow substantially. Finally, the stiffness of a slider 
bearing is presented for different geometrical characteristics of the bearing. 
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INTRODUCTION 

The need for an accurate analysis of compressible gas flow between closely spaced surfaces has 
arisen in connection with studies of externally pressurized bearings and leakage rates associated 
with gas seals. The gas inertia effect is important in such studies for an accurate flow calculation at 
the entrance and exit of the flow path. 

A survey of the literature shows that considerable work related to the effect of fluid inertia in 
hydrodynamic lubrication has been done for both the laminar and turbulent flow cases. A large 
number of analyses have been made for incompressible fluids. For small inertia effect the method 
of averaged inertia has been used e~tensively.~-~ It replaces the actual inertia terms by their 
average values in the equations of motion, leading to a Reynolds-type partial differential equation 
in pressure. However, the most serious assumption of the method is that the shape of the velocity 
is not influenced by inertia. 

Kuzma’ used a simple iteration scheme to account for the inertia effects in squeeze films. Small- 
perturbation analysis has also been used widely. The modified Reynolds number, or any other 
small parameter, can be used as the perturbation parameter for the expansion of velocities and 
pressure.*-’* The perturation solution is valid for Reynolds numbers (Re) much less than one. 
For arbitrary Re, TichyI3 developed a solution based on ‘slug flow linearization’ of the convective 
inertia terms, i.e. an Oseen-type approximation. 

The qualitative difference in performance between incompressible liquids and gases generally 
vanishes as the Mach number approaches zero. However, in many gas bearing applications, such 
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as externally pressurized gas bearings, the gas is considered compressible since the Mach number 
can reach large values. The density in the equations of motion and continuity is variable and 
depends on both pressure and temperature according to the equation of state. The gas viscosity is 
also dependent on both temperature and pressure. Therefore the temperature is also a variable in 
gas bearing analysis, in addition to the velocity components and the pressure. This requires the 
energy equation for the gas to be solved along with the Navier-Stokes equations (equations of 
motion), continuity equation and equation of state. Incorporation of the energy equation into the 
gas film analysis resolves the question of whether the gas expands isothermally or isentropically 
in the lubrication process. 

Generally, when the flow Mach number is low, the inertia effects are small and a parabolic 
velocity profile across the film thickness is a reasonable assumption. However, if the Mach 
number is not low, the parabolic velocity profile may lead to incorrect results. In the literature, 
numerous gas flow analyses are based arbitrarily on the parabolic velocity profile assumption 
because it simplifies the calculations significantly.’ A more exact analysis of inertia effects in 
longitudinal gas flow between parallel plates with no relative motion was performed by Elrod and 
Chu.I4 The energy equation was solved in conjunction with the two-dimensional boundary layer 
equations. The pressure was assumed to be constant across the film thickness. The equations were 
solved numerically for various entrance Mach numbers, assuming a uniform entrance velocity 
profile. The important result obtained was that for low Mach numbers the lubricating gas flow is 
isothermal, while for non-negligible Mach numbers the flow is approximately adiabatic but not 
isentropic. To our knowledge, the analysis performed by Elrod and Chu is the most realistic and 
relatively ‘exact’ analysis available in the literature for longitudinal gas flow. 

In this paper an analysis is presented to solve numerically the steady state Navier-Stokes 
equations, continuity equation and energy equation for a compressible ideal gas in a two- 
dimensional space. The same analysis can be easily extended to the time-dependent case. The 
convective terms in the Navier-Stokes equations are retained, including the important inertia 
effect for high-velocity gas flow. The flow between two, in general non-parallel, surfaces is studied. 
One of the surfaces may also move relatively to the other surface. A pressure gradient is applied 
between the entrance and exit of the flow. This pressure gradient can be very large (approximately 
13 800 kPa or 2000 lbfin-2), simulating the pressure difference between the combustion chamber 
and the ambient close to TDC (top dead centre). Thus a combination of Couette and Poiseuille 
flow is considered. The analysis covers both non-choked and choked flows where the velocity at 
the exit is less than or equal to the local sonic velocity respectively. The viscosity of the working 
fluid is a function of both temperature and pressure. The pressure across the film thickness is 
commonly constant in hydrodynamic lubrication and boundary layer problems. In this analysis, 
however, the pressure is allowed to vary across the film thickness. The present analysis is 
applicable only to lubrication problems where the lubrication film thickness is much smaller than 
the flow length (small aspect ratio). Furthermore, the analysis is applicable only to flow between 
non-diverging plates. Modifications are needed so that shocks in converging-diverging spacings 
can be calculated. 

The Newton-Raphson method is used to linearize the non-linear governing differential 
equations. The finite element method (FEM) is then used to solve the linearized boundary value 
problem. An ‘upwind’ finite element scheme is utilized since it helps the Newton-Raphson 
method to converge when the convective terms in the Navier-Stokes equations are significant. 
The results of this analysis are compared with (1) published results by Elrod and Chu14 and 
(2) experimental results. Results obtained by the proposed method are also presented for an 
externally pressurized slider bearing. An externally pressurized slider bearing is defined as a slider 
bearing where the applied pressure at the entrance (stagnation pressure) is much higher than the 
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pressure at the exit (discharge pressure). Finally, the stiffness of an externally pressurized slider 
bearing is calculated for different geometrical characteristics of the bearing. 

The motivation for this work was the development of an accurate flow analysis between two 
plates in order to (1) evaluate innovative ringless piston designs for low-heat-rejection (known 
also as 'adiabatic') engine applications and (2) develop an advanced gas film riding face seal which 
may replace conventional buffered labyrinth sealing systems which are used for sealing the 
compressor discharge air on current production gas turbine engines. The two-dimensional 
compressible Reynolds equation a p p r ~ a c h ' ~ '  l 6  is not adequate since it does not account for the 
gas inertia effect. In an IC engine with a ringless piston, when the piston is close to the TDC 
position, the flow through the piston-linear interface accelerates rapidly until it reaches a Mach 
number equal to one (choked flow) for a non-divergent gap if the entrance Mach number is less 
than one. Choked flow is also encountered in gas film riding face seals for gas turbine engine 
applications. Therefore, the gas inertia effect represented by the convective terms of the 
Navier-Stokes equations is essential in this analysis. 

HYDRODYNAMIC GAS FILM ANALYSIS 

The steady state Navier-Stokes momentum equations and continuity equation for laminar, 
compressible flow of a Newtonian fluid using the notation of Figure 1 are as follows for an 
infinitely wide slider: 

Stationary 
/ Surface 

- 
P Moving L U  

X Surface 
Velocity Notation I -U  I 

Figure 1. Bearing geometry and notation 
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In equations (la) and (lb) the Stokes idealization (2p-t331=0) is used and the body forces are 
assumed negligible for the lubricating film. Furthermore, the derivatives of the velocities across 
the film (z-direction) are assumed much greater than those in the direction of flow (x-direction). 
The equation of state for a perfect gas, 

p=pRT, ( 3 )  
relates the density to the pressure of the working fluid in this analysis. However, equation (3)  
introduces the temperature T as a new variable. The local gas temperature is determined by the 
following conservation of energy equation: 

p ( u  2 + w 2) = g ( k  g + pu ; ), (4) 

where h, is the stagnation fluid enthalpy. Under the general lubrication assumptions (boundary 
layer approximations), equation (4) is valid for a Newtonian fluid which obeys the Fourier 
conduction law.14 

For a fluid with unit Prandtl number, equation (4) can be approximated by14 

h, =constant = h + u2/2. (5 )  

Equation ( 5 )  is the standard energy equation used in adiabatic, compressible gas flow calculations 
of a perfect gas.” For a perfect gas 

Therefore equation (5) becomes 

where To is the stagnation fluid temperature. Equation (6) is used as an approximation of the 
energy equation (4) in this analysis. The local gas temperaure T is a function of the velocity u 
according to equation (6). This simplifies the present analysis because the gas temperature can be 
explicitly calculated from equation (6) if the velocity u is known. If the velocity u is much smaller 
than the local sonic velocity c=,/(yRT), the gas temperaure T is practically equal to the 
stagnation temperature To (isothermal film). However, if the gas velocity approaches the sonic 
velocity, T becomes very different from To.  

The viscosity of the working fluid is a function of both temperature and pressure. The working 
fluid in this analysis is air. The viscosity of air at atmospheric pressure is given by the following 
regression equation: * 

p=2*5914x T3-1*4346 x T2+5-0523 x 10-8T+4.113 x (7) 

where T is the absolute temperature in Kelvin. By plotting equation (7), it can be seen that the 
viscosity varies almost linearly with temperature. In this analysis the air viscosity is assumed to be 
linear with temperature at atmospheric pressure as follows: 

p = 3 * 8  x 10-’T+0.6125 x (NsmW2). (8) 
This linear relation approximates equation (7) very closely for practical purposes. 

The variation of the viscosity of air with pressure at room temperature is given in Figure 2-3.2 
of Reference 1. The viscosity increases linearly with increasing pressure with a slope of 



COMPRESSIBLE GAS FLOW BETWEEN PLATES 303 

0.41 x Nsm-2  kPa-'. In automotive diesel engine applications the maximum pressure of 
the working fluid can vary from atomospheric to approximately 13 800 kPa (2000 1bfinp2). 
Therefore the inclusion of the variation of viscosity with pressure is essential in this analysis. 

Finally, using equations (6)  and (8), the variation of viscosity with velocity and pressure is as 
follows: 

where 
p= k ,  -k2u2 + k3p  (N sm-2), (9)  

k l = 3 ~ 8 x 1 0 - 8 T o + 0 ~ 6 1 2 5 x  (NsmV2), 

k 2 =  1.891225 x lo-" ( N s ~ ~ - ~ ) ,  

k,=0*41 x (Nsm-2 kPa-I), 

and To is in Kelvin. 
The air constants y and R are taken equal to 1.4 and 287.04 m2 s W 2  K- ' respectively. Equations 

(3)  and (6)  are used to eliminate the density p and the temperature Tin equations (1) and (2)  as 
follows: 

Equations (10) and (1 1 )  are solved simultaneously for (u, w, p). 
The associated boundary conditions are (see notation of Figure 1) 

u = U  and w = O  atz=O, u=O and w=O, a t z=h .  (12) 

u=Uen at x=O, w=O atx=O, (13) 

At the entrance the velocity profile u can be specified. If a uniform entrance velocity u is assumed, 

where U,, is the unknown constant velocity of the gas at the entrance. A uniform but unknown gas 
pressure pen can also be assumed at the entrance. This pressure is determined by assuming an 
isentropic expansion of a perfect gas from the stagnation properties p o ,  To and uo=O to the gas 
properties pen, T and is,, at the entrance:" 

For non-choked flow conditions the pressure at the exit across the film thickness is equal to the 
atomospheric pressure pa: 

p =pa at x = L for non-choked flow. (15) 

However, for choked flow the average gas velocity iiex at the exit is taken equal to the sonic 
velocity c: 

fie.=; Ioh Me, dz=c at X =  L for choked flow. 

The pressure at the exit is unknown but greater than pa. 
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The highly non-linear boundary value problem, which consists of equations (lOa), (lob) and 
(11) and the boundary conditions of equations (12H14) and (15) or (16), is solved numerically for 
the unknowns u, w and p .  

The Newton-Raphson method 

unknowns u, w and p .  Equations (10) and (11) can be rewritten in an operator form as 
The Newton-Raphson method is used to linearize equations (10) and (11) with respect to the 

O(P,  u, w)=O, (17) 
subject to the same boundary conditions as discussed previously. The Newton-Raphson method 
linearizes equation (17) as follows: 

O ( P k ,  u k ,  wk )+  O ’ ( P k ,  u k ,  w k ) A p k +  o ’ ( p k ,  Ukr  wk)Auk + o ’ ( p k ,  u k ,  W k ) A W k = O ,  (18) 
where o ’ ( p k , u k ,  wk)Apk is the Frechet derivative of o ( p k , u k , w k )  with respect to pressure at 
( p k ,  u k ,  w k ) .  Here k denotes the iteration index. If the Frechet derivative exists at ( p k ,  u k ,  wk), it is 
given by 

(19) 

Similar expressions hold for o ’ ( p k ,  u k ,  W k ) A U k  and o ’ ( p k ,  u k ,  W k ) A W k .  Equation (18) can be solved 
for the linear correction (Apk,  Auk, Aw,J, which in turn can be used to obtain a better estimate for 
the solution. If @pk,  Auk, Awk) becomes progressively smaller as k - m ,  then the sequence 

d 
o-+o da O ’ ( P k ,  u k ,  wk)Apk=lim - O ( P k ,  Ukr w k ) .  

p k  + 1 = p k  + A P k ,  Uk  + 1 = u k  + A u k ,  w k  + 1 = w k  + A W k  (20) 
converges to the solution. After some algebra, equation (18) can be written as 

where A = RT, and B= (y - 1)/2y. In equation (21a), 1 = 1 and 1 = 2 correspond to the linearized 
momentum equations in the x- and z-directions respectively for the correction term 
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(Ap,, Auk, Awk). The notation for 1 = 1 and 1=2 is as follows: 

u1 =u, x1 = x  and A, = 1 (x-direction), (22) 
u2 = w, x2 = z, and ,I2 = 4/3 (z-direction). 

Equation (21 b) represents the linearized continuity equation. The boundary conditions associ- 
ated with equations (21) are 

AUk=AWk=o at Z = O  or h, (234 

Auk = constant, Apk = constant and Awk = 0 at x = 0, (23b) 

Apk+cAUk=-D at X=o, (234 

Apk=O at x =  L for non-choked flow, (234 
where 

For choked flow the back pressure is varied until equation (16) is satisfied within practical 
tolerances. 

Weak form 

The exact, continuous solution of the boundary value problem of equations (21) and (23) is very 
difficult to obtain. Therefore a discrete approximation of the exact solution is found using the 
finite element method. A standard procedure of finite element methods in the solution of physical 
problems described by a boundary value problem is to change the boundary value problem to a 
so-called weak form. The weak form converts the strong local description of the problem 
(differential equations) to a weak global integral form by constructing an orthogonal projection of 
each of the residual spaces of the momentum and continuity equations onto a subspace spanned 
by appropriate weighting functions. This is achieved by multiplication of equations (21) by an 
arbitrary virtual correction term f i k  (similar to virtual displacement in structural mechanics) and 
integration over the whole solution domain R. 

The velocity virtual correction functions Auk and AGk and the pressure correction function ADk 
are used as the virtual correction term f i k  for the momentum equations in the x- and z-directions 
and the continuity equation resp~tive1y.l~ Then integration by parts and use of the boundary 
conditions (23) yield 
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All the boundary terms from the integration by parts are equal to zero for non-choked flow 
because of the boundary conditions (23). 

Finite element discretization 

Serious attention must be given to the choice of interpolation functions for the velocity 
components and the pressure. Several different approaches have established that the inter- 
polation functions for the velocity components should be one order higher than the pressure 
interpolation functions. Y amada et aLZ0 arrived at this conclusion through consideration of a 
variational formula. Hood and Taylor” arrived at the same conclusion directly by considering 
errors in the weighted residual formulation, and Olson and Tuann” showed that spurious rigid- 
body modes occur in the element coefficient matrix unless this condition is met. Bercovier and 
PironneaP have confirmed the conclusion through a rigorous mathematical study of error 
estimates for Stokes flow. Typical finite elements for viscous flow maintain Co-continuity for the 
velocity components and the pressure but use interpolation functions for velocities one degree 
higher than pressure. This means that there are more velocity unknowns than pressure un- 
knowns. 

The solution domain R is divided in this study into E quadrilateral elements as in Figure 2. The 
area of each element is denoted by a,. The nine-node Lagrangian (subparametric) parabolic 
element is used for the discretization of both the velocity components. However, the four-node, 
linear, isoparametric element is used for the pressure discretization. An automatic mesh generator 
was developed which provides the co-ordinates of each node and the connectivities for both the 
velocity and the pressure elements. More points can be placed at the inlet and exit of the bearing 
in the direction of the flow (x-direction). This provides a dense grid in the regions where the gas 
inertia effect is more profound. The mesh generator can also create a dense grid close to the two 
bearing boundaries in the z-direction. This is necessary because the velocity gradient in the z- 
direction is large owing to the considerable viscous flow effect close to the walls which confine the 
flow. Furthermore, the mesh generator uses a node-numbering pattern which minimizes the 
bandwidth of the system of equations during the solution process, reducing the computational 
cost substantially. 
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0 Velocity node 

0 Velocity and 
Pressure node I 

3 Exit 

Pa 
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PO Exit 

Pa 
2 
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Figure 2. Geometry and discretization of flow domain 

The nine-node velocity element is shown in Figure 3. Within each nine-node Lagrangian 
element the velocity corrections Auk and Awk are approximated as follows: 

9 

i =  1 
A w k ( x ,  z)= 2 N / ( 5 ,  ?)Awki*  (234 

The interpolation (shape) functions N ;  arez4 

X(t> It) = Ll(5)Ll (It), K ( 5 ,  It)= ~Z(t)-b(It), N ; ( 5 ,  q)=L3(<)L1(q), 

N;(5? ? ) = L 3 ( l ) L 2 ( q ) ,  N X  It)= L3(5W3(It), Nz(<? q ) = L Z ( 8 L 3 ( q ) ,  (26) 

W l ,  It)=L,(5)L,(rl), Na5, It)= L(t)LZ(It), 

L ( O = M 5 - 1 ) ,  L2t5)=l-52, L3(5)=$5(5+ 1 1 9  

Ll (rl)  = $It (rl - 11, L,(It)= 1 -VZ, L,(rl)=$rl(It+1). 

N;; (5,d = Lz ( 5 W Z  (It)? 
where 

(27) 

The Galerkin finite element method has been used extensively to solve fluid flow problems. The 
Galerkin method uses the interpolation functions N ;  as the weighting functions Wi. However, 
spurious oscillations have been encountered with the Galerkin method when convective (first- 
derivative) terms are significant and therefore an elliptic boundary value problem with dominant 
first-derivative terms is to be solved. This problem is common in Navier-Stokes flows at high 
Reynolds number and convective transport phenomena at moderate to high Peclet number. The 
oscillations can only be removed by severe mesh refinement, which undermines the practical 
utility of the Galerkin method. An alternative approach is to use ‘upwind’ finite elements or, 
equivalently, a Petrov-Galerkin method with weighting functions Wi different from the inter- 
polation functions Ni.z5-z7 In this study, ‘upwind’ finite elements are used for the velocity 
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Figure 

‘1 . .  - 
Natural co-ordinates for nine-node quac ,ilateral Lagrangian element: (a) Cartesian co-ordinates; (b) natural 

co-ordinates. Element coefficients and positive velocity directions 

approximations since viscous flow at high Reynolds number with dominant convective terms 
(inertia effect) is considered. The weighting functions for the nine-node Lagrangian parabolic 
element in the natural co-ordinate system (5 ,  q) are chosen as follows:26 

where 
F(5)=25(5  + 1)(5 - I), 

w l ) = 2 q ( V + 1 ) ( 4 ’ - 1 ) .  

The coefficients a and /3 in equations (28) are taken asz6 

a= 1 -2/y, 

where 
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To compute the coefficients for a side joining nodes i and j ,  where i and j are both corner nodes, 
the velocity u in equation (32) is the mean velocity in the direction of this side. The positive 
velocity directions are indicated by arrows in Figure 3. The sign of the mean velocity u determines 
the sign of the coefficients a and p. In equation (32), h is the length between nodes i and j ,  and p 
and p are the fluid average density and average viscosity respectively along the side connecting 
nodes i and j .  Within each nine-node velocity element the virtual velocity corrections AU, and A*, 
(see equations (24a) for 1 = 1 and 1 = 2 respectively) are approximated as follows: 

The four-node isoparametric element is used for the pressure discretization. The four nodes of 
this element are the same as the corner nodes of the corresponding nine-node Lagrangian velocity 
element (see Figure 2). Within each pressure element the pressure correction Ap, and the virtual 
pressure correction AP, (see equations (24)) are approximated as follows: 

4 

j= 1 
z )=  N?(<, ?)Apkj.  (34b) 

Note that the weighting functions are the same as the interpolation functions NP for the pressure 
finite elements. The interpolation functions N? are as follows in the natural co-ordinate system 
(5 ,  

N,P(5, ?) = ac1 - 5)(1 - rl), 

w 5 ,  rl)=t(1+5)(1+1), ", ?I)=t( l -5)(1 +?I. (35) 

"9 ?)=$(1+5)(1-?), 

It is apparent from the chosen virtual correction functions AU,, A*,, and Ap, that the 
Petrov-Galerkin method is used to find the weak form of the momentum equations (24a), while 
the Galerkin method is used to find the weak form of the continuity equation (24b). 

Fluidity matrix and load vector 

The fluidity matrix and the generalized load vector are obtained from the weak form of the 
momentum equations and continuity equation (equations (24)) using the discretization discussed 
in the previous section. Substitution of the approximation functions of equations (25), (33) and 
(34) in equations (24) yields 
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where 1=1 and 1=2 correspond to the momentum equations in the x- and z-directions 
respectively and 

The expressions in large braces on the LHS and RHS of equations (36) are parts of the element 
fluidity matrix and the element load vector respectively. The assembling of the element fluidity 
matrices and load vectors is indicated by the summation signs in the above equations. After the 
assembling, the virtual correction functions and AGk), 
cancel out in equations (36) since they appear on both the RHS and LHS of the equations and at 
the same time are arbitrary functions which only satisfy the boundary conditions. Equations (36) 
represent the assembled fluidity matrix and load vector for all three correction functions (A&, 
Aiik, AGk) in a coupled form. Solution of these linear equations gives all three unknown correction 
functions at each nodal point for the kth iteration of the Newton-Raphson iterative solution 
procedure. On average, four to seven iterations are needed for the Newton-Raphson procedure to 
converge. 

The partial derivatives of the interpolation functions with respect to x and z, appearing in the 
element fluidity matrices and load vectors in equations (36), are calculated by using the element 
Jacobian matrix. The area integrations in the element fluidity matrices and load vectors are 
performed using a nine-point Gaussian quadrature form~la. '~  The global fluidity matrix is 
unsymmetric but banded. For this reason the Gaussian elimination method for unsymmetric but 
banded matrices is used to solve the system of linear equations for each Newton-Raphson 
iteration step. 

and A(61)k, I =  1,2 (or equivalently 
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VERIFICATION OF THE MODEL 

The accuracy of the developed method is checked against (1) published r esults by Elrod and 
Chu14 on the inertia and energy effects in the developing gas film between two parallel plates and 
(2) the measured flow of a compressible fluid between two parallel plates. 

Comparison with results of Elrod and Chu 

Elrod and Chu14 studied the inertia and temperature effects in entrance flow between parallel 
flat plates using the boundary layer theory. In addition, they developed an approximate theory 
which is implemented by a 'gas table' similar to that employed for conventional Fanno-line 
computations. 

In Table I of Reference 14 the authors present the pressure-distance relation in developing 
laminar flow with entrance Mach number Me,  = 0.2. They present the non-dimensional pressure 
p / p o  as a function of the non-dimensional distance xvo/a2U from the bearing entrance, where po  is 
the stagnation pressure of the entering flow, vo is the kinematic viscosity of the working fluid at 
the entrance stagnation state, a is the halfwidth between the two parallel plates (a = h/2), U is the 
average entrance velocity of the fluid and x is the distance from the entrance of the flow. The flow 
of air between two parallel plates of length L = 10 mm is calculated using the present analysis and 
compared with the results given by Elrod and Chu14 for Me,  =0.2. The stagnation pressure of the 
entering flow, p o ,  is kept constant at 3450 kPa (500 lbf in-2), while the back pressure (pressure at 
the exit) is varied until an entrance Mach number M,,=0.2 is reached. The air stagnation 
temperature is 25 "C. The results of the present analysis are compared with the results from Elrod 

3500 

3000 

2750 

I p] 2250 

2 
6 

1750 

1250 l 5 O 0 I  

\ . . . LEGEND 
Q = Present Analysis ~ 

0 = Elrod and Chu - - - - - 

1380.0 kPa- B 
1000 ! I I I 1 I 1 I I I I 

-0.25 0 0.25 0.50 0.75 1 1.25 1.50 1.75 2 2.25 
x*vO/(a**2*U) 

Figure 4. Pressure distribution between two parallel plates with h = 11 pm, L = 10 mm, p o  = 3450 kPa, To = 25 "C and 
Me,  = 0.2 
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and Chu's analysis in Figure 4 for h = 11 pm. The present analysis compares very well with Elrod 
and Chu's analysis. 

Next, a comparison is performed between the present analysis and that of Elrod and ChuI4 in 
order to demonstrate the accuracy of the present analysis in calculating the flow between two 
parallel plates for choked flow conditions. The stagnation pressure and temperature at the 
entrance are p o  = 3450 kPa and To = 200 "C respectively. The results are presented in Table 1. In 
order to demonstrate the importance of the fluid inertia effect in calculating the flow accurately, 
the compressible Reynolds equation approach (see Appendix I), which neglects the fluid inertia 
effect, is used and its results are also presented in Table I. 

Although the present analysis compares very well with Elrod and Chu's analysis, the com- 
pressible Reynolds equation gives a very different flow. From these results and many other 
numerical experiments it was concluded that for choked flow or for non-choked flow with 
relatively high exit Mach number (MeX > 0.547) the present analysis is necessary if the flow is to 
be calculated accurately. 

Comparison with experimental data 

An experimental study of air flow between two parallel plates was conducted at the General 
Motors Research Laboratories in the early 1960s. This study was prompted by the increasing 
interest in externally pressurized (pneumostatic) gas bearings at that time for use in numerous 
specialized applications. 

The measured flow rates are presented in Table I1 for different operating conditions (clearance, 
flow width, inlet pressure, back pressure and stagnation temperature). The flow path length 
(bearing length) is 13-31 mm for all the operating conditions in Table 11. In the same table the 
calculated flow rates with the present analysis and with the compressible Reynolds equation 
method of Appendix I are also presented. In the last two columns of Table 11 the percentage 
deviation of the calculated results from the measured results is presented. For relatively low 
velocity flows due to either small clearance (first and second rows of Table 11) or moderate 
clearance and small inlet pressure (fourth row of Table 11), both the present analysis and the 
compressible Reynolds equation method compare very well with the measured flow. In this case 
the compressible Reynolds equation gives good results because the gas inertia effect is negligible 
due to low-velocity flows. However, for high-velocity flows due to moderate clearance and high 
inlet pressure (third row of Table 11) or large clearance (last four rows of Table 11), the present 
analysis compares very well with the experimental results while the compressible Reynolds 
equation is very much in error. 

Table I. Calculation of the choked flow between two parallel plates with 
h= 14 pm, L = 10 mm, p o  = 3450 kPa and To = 200 "C 

Elrod and Chu14 Present Compressible Reynolds 
analysis equation 

~~~~~ 

Pen &Pa) 3355.12 3349.12 3306.48 
Pcx (kPa) 114.13 '759.0 800.4 
M e n  0.2 0.205 0.25 

Flow (g s- ') 6.254 5.904 1.541 
Me, 1 .o 1 .o 1 .o 
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SELECTED RESULTS 

In this section the flow between two non-parallel plates representing a slider bearing, is calculated 
with the present method for certain operating conditions. The bearing length is L= 12 mm 
and the stagnation pressure and temperature at the bearing entrance are p,=3450 kPa and 
To = 200 "C respectively. 

Figures 5-7 show the distribution of the axial velocity u(x, z) for choked flow when the plates 
are stationary (V = 0). The film thickness at the entrance and exit is h,  = 20 pm and h2 = 10 pm 
respectively. The atornospheric pressure pa = 103 kPa is applied at the exit. The uniform velocity 

po = 3450 kPa 

hl -20 pm 

- I 
pa = 103 kPa 

10 pm 

Figure 5. Distribution of velocity u(x, z) in metres per second for choked flow between two non-parallel but stationary 
plates with uniform entrance velocity 

x=o.1 L- 

x = 0 4  

19.0- 

Figure 6. Distribution of velocity u(x,z) in metres per second for choked flow between two non-parallel but stationary 
plates with uniform entrance velocity for O<x<O. lL  
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x =  0.9 L-I x=Ll 

Figure 7. Distribution of velocity u(x, z) in metres per second for choked flow between two non-parallel but stationary 
plates with uniform entrance velocity for 0.9L.d~ d L  

f NZ= 13 

I 

Figure 8. Computational grid for flow between two plates with uniform entrance velocity 

assumption has been imposed at the bearing entrance. The computational grid used in this 
example is shown in Figure 8. NX = 301 was used in the x-direction and NZ = 13 was used in the 
z-direction. As shown in Figure 5, the flow is slow in the first half of the bearing while it 
accelerates rapidly at the exit (Figures 5 and 7). The formation of a laminar boundary layer at the 
bearing entrance is clearly shown in Figure 6. The boundary layer is fully developed for 
x > 0.025L. Away from the entrance the velocity distribution across the film gap is almost 
parabolic. This type of flow in the entry region of a bearing or a tube due to uniform entrance 
velocity is well observed and mentioned in the literature (e.g. see Figures 1-10 in Referece 28). 
Because of the very rapid changes of the velocity profile in the entrance region, a very find grid is 
required in the axial direction close to the entrance in order for the computational scheme to 
converge. This is done by an automatic mesh generator. 



316 Z. P. MOURELATOS 

Close to the bearing exit the flow accelerates very rapidly (Figures 5 and 7) due to a sharp 
pressure gradient at the bearing exit (Figure 10). The flow velocity goes from Mach number 0.5 
at x=0-925L to Mach number 1.0 (choked flow) at x = L  (Figure 7). At the exit the critical 
pressure is p(L)=786.6 kPa (Figure 10). Recall that the atmospheric pressure Pa= 103 kPa is 
applied at the bearing exit. 

Owing to the rapid flow acceleration, a finer mesh is also needed at the bearing exit in order to 
calculate the flow accurately. However, several numerical experiments with the present analysis 
have shown that computational accuracy at the entrance is much more important than the 
computational accuracy at the exit for convergence of the algorithm. For this reason, when the 
uniform entrance velocity assumption is used, a dense grid is used only arouhd the entrance while 
a relatively coarse grid is used along the rest of the bearing length, including the exit area. This 
reduces the computational cost substantially and at the same time ensures convergence of the 
algorithm. 

It was also found that when the uniform entrance velocity assumption is removed, the pressure 
distribution along the bearing is virtually unaffected. Furthermore, the flow pattern in the bearing 
is also unaffected after the laminar boundary layer is fully developed. Therefore the assumption of 
the shape of the entrance velocity is not expected to affect the flow very much for the applications 
appearing in this paper. 

The influence of the energy equation in calculating the flow is demonstrated in Figures 9 
and 10. If the energy equation is considered in the analysis, the velocity of the flow is coupled with 
the temperature of the working fluid at a particular (x, z)-position. Therefore, if air is the working 
fluid, the fluid viscosity varies according to equation (9) depending on the axial velocity u(x, 2). 

The results with the energy equation considered in the analysis are denoted by the broken lines 

-2 
-50 0 50 100 150 200 250 300 350 400 450 500 

Velocity u(x,z) in m/s 

Figure 9. Velocity distribution at bearing exit for flow between two non-parallel plates 
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Bearing Length in mm 

Figure 10. Pressure distribution along bearing for choked flow between two non-parallel plates 

(variable viscosity) in Figures 9 and 10. The solid lines in the same figures represent the results 
when the fluid viscosity is independent of the fluid velocity (constant viscosity). The geometry and 
operating conditions here are the same unless specified otherwise. The solid line in Figure 9 
represents the velocity at the bearing exit for choked flow with constant viscosity. As shown in 
Figure 10, the critical pressure is p(L)=903-2 kPa. Recall that the critical pressure is 
p(L) = 786.6 kPa when the energy equation is used. If the exit pressure p(L) = 903.2 kPa is 
imposed as a boundary condition with the energy equation considered in the analysis (variable 
viscosity), the velocity at the exit is given by the broken line in Figure 9. It is noted that for 
variable viscosity the velocity at the exit is less than the velocity obtained with constant viscosity. 
This means that the critical pressure will be higher when the energy equation is not considered 
(Figure 10) in order to compensate for the flow deceleration at the exit. Figure 10 compares the 
pressure distribution for choked flow between the constant viscosity and variable viscosity cases. 
For practical applications the pressure distribution does not change considerably. It was also 
found that the maximum velocity (occurring around the midspan position) at cross-sections along 
the bearing length is only 6% higher when a variable viscosity is used compared to the constant 
viscosity case. From these results it is concluded that the energy equation can be omitted in most 
of the practical applications considered in this paper. 

Figure 11 compares the axial pressure distribution and midspan velocity obtained with the 
present analysis and the Reynolds equation approach. When the inertia effect is neglected 
(Reynolds equation), the calculated pressure is underestimated while the flow velocity is substan- 
tially overestimated. The overestimation of the velocity introduced an almost 50% error in the 
flow for this example. This error increases with increasing inclination angle of the slider bearing, 
indicating that the gas inertia effect is more profound for large inclination angles. 
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Figure 11. Comparison of pressure and midspan velocity distributions between present analysis and Reynolds equation 
approach 

Figure 12 illustrates the influence of the relative motion between the two planes on the pressure 
and velocity distributions. The lower plane is moving with a velocity U = 127.0 or 254.0 m s-'. 
Positive U means that the lower plate moves in the same direction as the flow. The rest of the 
operating conditions are the same. A small relative velocity U does not affect the Poisseuille flow 
between the two planes especially for high-Mach-number flow. However, for U=1270 or 
254-0 m s- the influence of U is considerable. Note that the sonic velocity for air is 429-0 m s- '  at 
200 "C. As expected, the load capacity of the bearing increases with increasing U. The average 
velocity across the film increases also, resulting in a flow increase through the bearing. The 
average modified Reynolds number based on the minimum film thickness is about 2.2 and 5.2 for 
U = 127.0 and 254-0 m s C 1  respectively. For relatively large U the pressure very close to the 
bearing exit is much larger than the imposed pressure exactly at the bearing exit. This means that 
choked flow takes place at the bearing exit. The choked flow conditions (back pressure and 
maximum flow rate) are predicted by the present method. 

Stifness of an externally pressurized slider bearing 

Figures 13-15 demonstrate the stiffness characteristics of the gas bearing between two, in 
general non-parallel, plates for different geometry configurations based on the analysis presented 
in this paper. The stagnation pressure and temperature are po=3450 kPa and T0=200"C 
respectively. The exit pressure is taken as p,=903*2 kPa. Figure 13 shows the influence of the 
angle between the two planes on the pressure distribution. The film thickness at the entrance and 
exit is denoted by h ,  and h,, respectively. It is noted that as h, increases, with h2 kept constant, the 
load capacity of the bearing increases. Therefore the stiffness of the bearing increases with 
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Figure 12. Influence of relative motion between slider planes on pressure and average velocity distributions 
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Figure 13. Pressure distribution along bearing for nonchoked flow between two non-parallel plates for different angles 
of inclination between plates 
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Figure 14. Pressure distribution along bearing for non-choked flow between two non-parallel plates for different 
minimum film thicknesses 
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Figure 15. Pressure distribution along bearing for non-choked flow between two parallel plates for different film 
thicknesses 
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increasing angle of inclination between the two planes. Figure 14 illustrates the effect of the 
minimum film thickness between the two planes on the bearing stiffness. Here the angle of 
inclination between the two planes is kept constant. As the minimum film thickness decreases, the 
load capacity of the bearing, the consequently the stiffness, increases. However, this is true only 
when the angle of inclination between the two planes is not zero. In Figure 15 the minimum film 
thickness changes but the angle of inclination is zero. It is noted that the bearing load capacity 
remains practically the same or, equivalently, the bearing stiffness is zero. This conclusion can be 
proven theoretically, when the fluid inertia effect is neglected, from the compressible Reynolds 
equation (equation (37) in Appendix I). If the angle of inclination between the two planes is zero 
(constant film thickness), the RHS of equation (37) is zero and therefore the pressure along the 
bearing is independent of the constant film thickness h. 

CONCLUSIONS 

1. The results for the present analysis agree very well with available analytical and experi- 
mental results. 

2. The gas inertia effect is important in high-velocity flow (e.g. choked flow) between two 
closely spaced plates. 

3. The energy effect can be ignored for practical purposes in calculating the flow between two 
closely spaced plates. 

4. The stiffness of an externally pressurized slider bearing (a) increases with increasing angle of 
inclination between the two plates, (b) increases with decreasing minimum film thickness for 
non-parallel plates and (c) is practically zero if the two plates are parallel. 

APPENDIX I: SOLUTION METHOD FOR COMPRESSIBLE REYNOLDS EQUATION 

Under the usual lubrication assumptions for the film separating two closely spaced surfaces, the 
Navier-Stokes equations and the continuity equation reduce to the following compressible 
Reynolds equation3 for the steady state, one-dimensional case using the notation of Figure 16. 

(37) 

The density p of the working fluid is related to the pressure by the perfect gas relation of 
equation (3). The boundary conditions associated with equation (37) are as follows for unchoked 
and choked flow according to the notation of Figure 16. 

UnchokedJEow 

p=pen at x=O, 

p=pa at x = L .  

An isentropic expansion of a perfect gas is assumed from the stagnation properties p o ,  To and 
uo = 0 to the gas properties p, T and average velocity iien at the entrance. Thus 
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Po 

P 

Figure 16. Geometry and notation of gas film for compressible Reynolds equation method 

The average velocity at the entrance is given by 

Choked Bow 

p=pen at x=O. (38) 

The pressure at the entrance, pen, is given by equation (40). For choked flow the average velocity 
at the exit, U,,, is assumed to be equal to the sonic velocity c=J(yRT,): 

- 
u,, = c. (42) 

According to lubrication theory, the velocity distribution in the film gap is 

The average velocity at the exit is 

Because of equations (42) and (43), the gradient of the pressure at the exit is known and given by 

Therefore for the case of choked flow the boundary conditions for equation (37) are given by 
equations (38) and (44). 

The solution algorithm for the compressible Reynolds equation and the associated boundary 
conditions is described in Figure 17. A pressure at the entrance, pen, is assumed and then equation 
(37) is solved numerically along with the appropriate boundary conditions using the finite 
element method. The Newton-Raphson method is used to linearize the Reynolds equation while 
the Galerkin method is employed at each iteration step to solve the resulting linear equations for 
the correction term.16 After the solution has been found, the average velocity at the entrance, U,,, 
is calculated from equation (41) and then used in equation (40) to calculate the corresponding 
pressure at the entrance, p:-,, due to an isentropic expansion of the gas from the stagnation state to 
the conditions at the bearing entrance. The algorithm is considered converged if the initially 
assumed pen is close to p:,, within a tolerance. Otherwise, pen is taken equal to p,*, and the 
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Pen' Po 0 
Solve Compressible 
Reynolds' Equation 

with Boundary Conditions 

Figure 17. Solution algorithm for compressible Reynolds equation method 

boundary value problem is solved again. Three or four iterations are generally needed for the 
algorithm to converge to the final value of pen. It should be noted that the compressible Reynolds 
equation method neglects the gas inertia effect (convective terms in the Navier-Stokes equations). 
This simplification is not realistic for high-velocity flows. 

APPENDIX 11: NOMENCLATURE 

bearing breadth 
sonic velocity 
constant-pressure specific heat of an ideal gas 
number of quadrilateral finite elements 
gas film thickness 
ent halpy 
entrance and exit film thicknesses 
bearing length 
Mach number 
finite element velocity shape function of ith node 
finite element pressure shape function of ith node 
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N X ,  N Z  
P 
P 
Pa 
R 
Re 
T 
u, 0, w 
u, w 
U,”, 4, 
U 
Wi 
x, Y, z 

Greek letters 

- -  

ai, Pi 
Y 

P 

P 
R 

E 

V 

Re 

Subscripts 

en 
ex 
k 
0 

Superscripts 

* 
* 

Z. P. MOURELATOS 

numbers of nodal points in x- and z-directions 
pressure 
virtual pressure 
bearing back pressure 
specific gas constant of a gas 
Reynolds number 
temperaure 
velocity components in Cartesian co-ordinates (Figure 1) 
virtual velocity components in x- and z-directions 
average entrance and exit velocities in x-direction 
velocity of moving plane in x-direction (Figure 1) 
finite element velocity weighting function of ith node 
Cartesian co-ordinates (Figure 1) 

‘upwind’ coefficients (Figure 5 )  
ratio of specific heats of an ideal gas 
error tolerance for convergence 
gas viscosity 
dynamic gas viscosity 
gas density 
gas film domain 
domain of a gas film finite element 

entrance 
exit 
iteration number 
stagnation property 

non-dimensional value 
intermediate value 
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